Manifolds and Group actions

Homework 11

Mandatory Exercise 1. (12 Points)
Let G be a compact n-dimensional Lie group. For $x \in G$ let L_{x} and R_{x} denote the left and right translation by x.
a) A degree k form $\omega \in \Omega^{k}(G)$ on G is called left invariant if $L_{x}^{*} \omega=\omega$. Show that there is a bijection between left invariant degree k forms on G and $\Lambda^{k} T_{e}^{*} G$. Conclude that for every $\lambda \in \mathbb{R}$ with $\lambda \neq 0$ there exists a unique left invariant volume form ω on G with $\int_{G} \omega=\lambda$.
Note: $\int_{G} \omega$ is well defined because the Lie group G is compact!
Fix a left invariant volume form $\omega \in \Omega^{n}(G)$.
b) Show that for $x \in G$ the form $\eta=R_{x}^{*} \omega$ is left invariant.
c) By part a) there exists $\lambda \in \mathbb{R}$ with $\lambda \neq 0$ such that $\eta=\lambda \omega$. Compute the constant λ (by comparing the integrals over M). Conclude that left invariant volume forms on G are also right invariant.
d) Let M be a manifold and $\varphi: G \times M \rightarrow M$ an action of G on M and $\varphi_{x}: M \rightarrow M$ the map $\varphi_{x}(p)=\varphi(x, p)$. Let g be any Riemannian metric on M. Show that

$$
h_{p}\left(X_{p}, Y_{p}\right)=\int_{G}\left(\varphi_{x}^{*} g_{p}\right)\left(X_{p}, Y_{p}\right) \omega_{x}
$$

defines a G invariant metric on M, i.e. show that h is a metric and that $\varphi_{y}^{*} h=h$.
Mandatory Exercise 2. (8 Points)
Let $T^{2}=S^{1} \times S^{1} \subset \mathbb{C}^{2}$. Consider the action $\varphi: T^{2} \times \mathbb{C P}^{2} \rightarrow \mathbb{C P}^{2}$ defined by

$$
\varphi\left((t, s),\left[z_{0}, z_{1}, z_{2}\right]\right)=\left[t z_{0}, s z_{1}, z_{2}\right]
$$

a) Investigate this action. i.e. determine if the action is free, effictive and/or transitive. If the action is not free, determine the fixed points and the stabilizers. If the action is not transitive determine the orbits.
Consider the following group homomorphism $f: S^{1} \rightarrow S^{1} \times S^{1}$, given by $f(s)=\left(s^{k}, s^{l}\right)$ where $k, l \in \mathbb{Z}$.
b) The Lie group homomorphism induces an action $\psi: S^{1} \times \mathbb{C P}^{2} \rightarrow \mathbb{C P}^{2}$ by

$$
\psi\left(s,\left[z_{0}, z_{1}, z_{2}\right]\right)=\varphi\left(f(s),\left[z_{0}, z_{1}, z_{2}\right]\right)
$$

Answer the same questions as in part a), but for this action.
Hint: This strongly depends on the number theoretic properies of k and l !
Suggested Exercise 1. (0 Points)
Show that a G action on M is proper, if and only if for any two compact subsets $K_{1}, K_{2} \subset M$ the set

$$
\left\{g \in G \mid\left(g \cdot K_{1}\right) \cap K_{2}\right\}
$$

is compact.

